Catalytic nanoreactors in continuous flow: hydrogenation inside single-walled carbon nanotubes using supercritical CO2.
نویسندگان
چکیده
One nanometre wide carbon nanoreactors are utilised as the reaction vessel for catalytic chemical reactions on a preparative scale. Sub-nanometre ruthenium catalytic particles which are encapsulated solely within single-walled carbon nanotubes offering a unique reaction environment are shown to be active when embedded in a supercritical CO2 continuous flow reactor. A range of hydrogenation reactions were tested and the catalyst displayed excellent stability over extended reaction times.
منابع مشابه
Regioselective control of aromatic halogenation reactions in carbon nanotube nanoreactors.
The use of single-walled carbon nanotubes as effective nanoreactors for preparative chemical reactions has been demonstrated for the first time. Extreme spatial confinement of reactant molecules inside nanotubes has been shown to drastically affect both the regioselectivity and kinetics of aromatic halogenation reactions.
متن کاملDevelopment of a Novel Catalytic Membrane Reactor for Heterogeneous Catalysis in Supercritical CO2
A novel type of high-pressure membrane reactor has been developed for hydrogenation in supercritical carbon dioxide (scCO(2)). The main objectives of the design of the reactor are the separate feeding of hydrogen and substrate in scCO(2) for safe reactions in a continuous flow process, and to reduce the reaction time. By using this new reactor, hydrogenation of cinnamaldehyde into hydrocinnamal...
متن کاملPreferential elimination of thin single-walled carbon nanotubes by iron etching.
We report that iron particles-assisted etching can be applied to selectively remove single-walled carbon nanotubes (SWNTs) with diameters smaller than 1.2 nm via the catalytic hydrogenation of carbon in a film of SWNTs, which is proven by a Raman spectroscopy-based technique.
متن کاملRadius Dependence of Hydrogen Storage Inside Single Walled Carbon Nanotubes in an Array
In this study, we have investigated radius dependence of hydrogen storage within armchair (n,n) single walled carbon nanotubes (SWCNT) in a square arrays. To this aim, we have employed equilibrium molecular dynamics (MD) simulation. Our simulations results reveal that radius of carbon nanotubes are an important and influent factor in hydrogen distribution inside carbon nanotubes and consequentl...
متن کاملHydrogenation of single-walled carbon nanotubes.
Towards the development of a useful mechanism for hydrogen storage, we have studied the hydrogenation of single-walled carbon nanotubes with atomic hydrogen using core-level photoelectron spectroscopy and x-ray absorption spectroscopy. We find that atomic hydrogen creates C-H bonds with the carbon atoms in the nanotube walls, and such C-H bonds can be completely broken by heating to 600 degrees...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical communications
دوره 50 40 شماره
صفحات -
تاریخ انتشار 2014